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Abstract— This paper presents the development of a satellite 

simulation tool that simulates a “day in the life” in the operations 

of a satellite to help establish the feasibility of a mission concept 

during Pre-Phase A conceptual mission studies. The paper 

provides a thorough description of the simulation tool, which 

propagates a rich satellite state vector which, in addition to 

position and velocity (or orbital parameters), includes on/off state 

of significant components, power in/out, battery state of charge, 

eclipse, and data storage. The simulator includes an interface that 

executes the flight software at discrete events in the simulation 

(e.g., attitude changes) on realistic satellite hardware, which is not 

conventionally done until much later i.e. Phase B-C. This can help 

us identify issues with a mission conops earlier. In this case, the 

hardware used is the EyasSat GEN 5 Nanosatellite Simulator, and 

is controlled using COSMOS by Ball Aerospace. The constraints 

imposed by this hardware are only representative of very small 

satellites. The paper discusses simulation performance and its 

implications for facilitating feasibility checks in early mission 

concept studies. 
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I. INTRODUCTION 

A simulation is an essential tool in the design and 
verification of space systems, and in the Pre-Phase A stage of 
the systems design process can serve as a feasibility check for 
proposed mission concepts [1]. During these conceptual studies, 
numerous tools may be deployed to evaluate the expedience and 
stakeholder satisfaction of proposed mission architectures. 
These tools include but are not limited to parametric sizing, 
rules-based expert systems, and Concept of Operations 
(ConOps) simulators [2, 3, 4]. While current ConOps 
simulations ascertain the efficacy of the “day in the life” 
operations of a satellite, current tools do not incorporate the 
hardware aspect of such designs beyond basic software 
modeling. Satellite simulators that include the hardware-in-the-
loop are typically reserved for later phases in the design process 
for design testing and verification i.e., Phase D [5]. The 
application of a hardware-in-the-loop satellite simulator that 
simulates day-in-the-life operations provides an additional level 
of fidelity in early mission feasibility checks. Such a tool allows 
testing if existing software and hardware can be used for the 
mission or if new developments must be done. It also helps 
verify that certain mission requirements can be met for new 
distributed mission concepts that rely more on on board 
processing, autonomy, and communications between satellites. 

The Pre-Phase A design stage is crucial in determining the 
chances of success of any given mission concept. During this 
phase, a wide array of design ideas and alternatives are proposed 
and weighed according to a variety of factors including 
stakeholder needs, cost, risk, etc [1]. Poor decision-making in 
this stage may lead to cost overruns, project delays, low 
stakeholder satisfaction, and even termination of the project. In 
fact, it has been shown that early design decision making is the 
most frequently occurring risk area on flight software cost risk 
[6].  

The implementation of various software tools provide 
designers with different means of assessing proposed 
architectures and their merits. For example, parametric scaling 
relationships provide systems engineers with estimates of the 
main physical and economic aspects of the mission, including 
the system budgets (e.g., mass, power) and lifefycle cost and 
schedule [2, 7]. Rule-based systems such as VASSAR allow 
engineers to consider qualitative requirements and subjective 
preferences in addition to the quantitative and objective 
information captured by parametric models [3]. Cognitive 
assistants have also been proposed to help the user find good 
mission designs by integrating these models mentioned above, 
plus the ability to query various databases in natural language 
[8]. All these tools provide valuable information to designers 
that can help to make more educated decisions and reduce the 
probability of pursuing flawed or suboptimal designs.  

Numerous simulation tools have been implemented as well 
that provide data for calculating various figures of merit and 
performance metrics. Such proposed tools include constellation 
instrument simulations [9], simulators that perform “what-if” 
scenarios [10], space station simulators [11], and a 4-module 
approach that tracks position/veclocity, equipment states, power 
levels, and memory states for daily operations [4]. These are 
only a few of the numerous software-only simulations that are 
currently used to verify the feasibility of a given mission design 
in the Pre-Phase A stage. 

While using a purely mathematical model of the system 
allows for a good approximation of the performance of a design, 
some parts are historically difficult to model, e.g., actuators, 
decreasing the fidelity of the simulation [12]. Due to this 
decreased veracity, the introduction of hardware-in-the-loop in 
the simulation allows for higher-fidelity simulations and 
feasibility checks. The current literature on hardware-in-the-
loop simulations for space systems focuses on the integration 



and testing phase of the design process, with simulations relating 
to satellite attitude control, rendezvous and docking, and 
CubeSats [5, 13].  

This paper seeks to bridge the gap by incorporating 
hardware-in-the-loop into Pre-Phase A simulations. Section II 
presents the developed simulator with both the software 
development and hardware used for this simulation. Section III 
goes through a case study of a “day in the life” of a satellite using 
our hardware-in-the-loop simulator. Finally, in Section IV we 
discuss the applicability of such a tool and future work to be 
done. 

 

II. SYSTEM OVERVIEW 

A. Overall Architecture 

The architecture of the hardware-in-the-loop simulator 
consists of four modules: the Agent module, the Orbit 
Propogator Module (poisiont, velocity, attitude, coverage data), 
the satellite hardware interface, and the satellite hardware. A 
diagram of the architecture is provided in Figure 1. 

 The simulator uses the concept of an Agent class, which is 
part of our lab’s Distributed Multi-Agent Satellite System 
Simulation (DMAS) project developed by Alan Aguilar. This 
provides the user optionality to simulate satellite constellations 
with distributed architectures with hardware-in-the-loop. In this 
architecture, satellites, ground stations, and aircraft are all 
treated as Agents.  

 Each Agent has an Actor, a Scheduler, and a Platform 
Simulator. The Actor perceives information from its 
environment or from other agents and performs the actions given 
by the Scheduler. The Scheduler processes information 
perceived by the agent, maintains an internal knowledge base, 
and determines the next sequence of actions to be performed. 
The Platform Simulator tracks the current state of the agent and 
can turn off the Agent if actions exceed capabilities.  

 This approach provides the flexibility to run multiagent 
simulations with decentralized planning, where each agent is an 
independent actor, multiagent simulations with centralized 
planning, where there is a central agent that sends actions to the 
rest of the agents, or to run with a single agent i.e., no 
constellation. A benefit of including an onboard Agent is that 
one can configure the onboard Agent program to change its 
behavior based on what it perceives, as is the case with many 
modern satellite flight softwares. Additionally, it provides a 
framework for reinforcement learning with the flight software 
and onboard agent [14]. 

 In addition to this Agent Class, the simulator draws upon the 
Orbit Propogator module for position, attitude and coverage 
data. The agent class also receives information from the 
hardware interface which can receive and send information from 
other agents, e.g. satellites, in the simulation. The Agent sends 
commands and updates to the hardware interface that may 
include executable flight software or commands to message 
other agents. 

B. Software Development 

The simulator is primarily written in Python and uses the 
SimPy package, a process-based discrete-event simulation 
framework. This package enables the user to simulate in real-
time, “as fast as possible,” or by manually stepping through 
discrete events [14]. The simulator provides flexibility to the 
user, with the option to run the satellite simulation in real-time, 
or to speed up the simulation until a discrete event with 
commands to be executed on the satellite hardware. 

The simulator propagates the state of various parameters 
throughout the simulation including position, velocity, attitude, 
access/coverage, power systems, and communications/data 
handling. The information coming from Orbit Propogator 
module is a cartesian state vector of position and velocity, along 
with a Boolean value of whether the satellite is in an eclipse state 
or not. The Orbit Propogator Module uses OrbitPy, a software 
framework which facilitates the design of novel observation 
systems [15]. The coordinate system selected is the J2000 
celesital coordinate system, although the user can change this if 
desired. Additionally, coverage metrics can be calculated on a 
coverage grid given the swath and scan characteristics of the 
simulated payload. These orbit and coverage calculations are 
pre-computed before the start of the simulation with an inputted 
start time, orbit, and simulation duration. The precomputation of 
orbit propagation and coverage does indicate, however, that 
performing orbit changes in the flight software is not currently 
supported. This is something that can be implemented in future 
work. The power and communications simulations can be 
performed in two ways, either entirely mathematically modeled, 
or using the state of the hardware-in-the-loop.  

The mathematically-modeled state of the power and 
communications systems track the battery charge state, power 
out, power in (solar arrays), available data storage, and the 
amount of data transmitted. They use known characteristics to 
model the expected behavior of the systems for each interpolated 
interval. The use of the mathematically-modeled system states 
is useful when testing out specific flight software on individual 
systems, e.g. the attitude, determination, and control subsystem 
(ADCS). Additionally, it may be difficult to simulate the proper 
solar input for the solar panels when performing a hardware-in-
the-loop simulation, so mathematical modeling is best suited 
when proper environments are not available. 

Using the state of the hardware in the simulation produces 
the greatest fidelity of simulation this tool provides. The user can 
track the real time characteristics of the power in/out, available 
data storage, and the states of both the thermal and ADCS 
subsystems. An application of the hardware-in-the-loop 
simulator is expanded upon in Section III. 

C. Hardware Components 

For industrial applications, a majority of the hardware 
components will likely be readily available at the time of 
mission conception, especially for small satellites and CubeSats 
[16]. The application to CubeSats is evermore important with 
the increasing proportion of CubeSats being launched and the 
advent of CubeSat Comercial-Off-The-Shelf (COTS) 
components [17]. On account of this, likely, the majority of the 
hardware components being considered for the mission 
architecture in industrial use cases are readily available, and 
hence may be used as the hardware-in-the-loop for simulation. 
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Since industrial use cases require the flexibility to 
incorporate their own hardware and flight software, which may 
be executed through different software, the simulator developed 
has the open flexibility of connecting to different APIs to 
interface with the satellite hardware. It is commonplace for 
companies to maintain their own catalog of components, either 
developed by them directly or used in past missions, so this API 
allows for easy integration of industrial components on hand. As 
further discussed in Section III, we applied this to the EyasSat 
GEN 5 Nanosatellite simulator, using an API to control it with 
COSMOS by Ball Aerospace. 

III. CASE STUDY 

 To test the efficacy of the simulator developed, we 
applied it to the aforementioned EyasSat GEN 5 Nanosatellite 
[18], a prime example of readily available COTS hardware.   

 

A. Hardware Specifications 

A summary of the systems and components of the satellite is 
shown in Table 1. The EyasSat is controlled using the COSMOS 
Open Source Command-and-Control System built by Ball 
Aerospace [19]. This includes a GUI for user controls and data 
viewing, as well as a built-in JSON API. Communications 
between the simulator and the satellite hardware are conducted 
using the ballcosmos Python package, the official Python API 
for COSMOS. In COSMOS, the executable flight software 
commands are written in Ruby, and are then converted into 
command packets that are readable for the satellite components. 

The EyasSat has four distinct boards that control the various 
subsystems of the satellite. These include the power distribution 
board, the ADCS board, and two data handling boards. The 
communications and thermal subsystems are controlled via the 
two data handling boards. 

The electric power subsystem (EPS) is controlled by the 

power distribution board. This boards monitors and manages 

the various components of the EPS. The two main components 

within the power system are the battery, for energy storage, 

and the solar arrays, the energy source. The battery can be 

recharged either using the solar arrays, or by using an external 

5.3 V charger. The solar array is body-mounted on one side of 

the satellite, with 6 solar cells. These can be run in two 

configurations, either 3 parallel 2 series, or 2 parallel 3 series. 

The Attitude, Determination, and Control Subsystem 

(ADCS) board controls the various components of the ADCS. 

The EyasSat has three degrees of rotational freedom, with one 

reaction wheel for rotation about the z-axis, and two 

orthogonally placed magnetorquers for rotation about the x-

axis and y-axis. 

The Thermal subsystem is controlled by the data handling 

boards. It contains a thermal panel mounted opposite the solar 

array, which has two heaters beneath 2 plates, a copper rod, 

and heat pipe. It also contains temperature probes for sensing 

and maintaining proper temperature within the satellite. 

The communications subsystem is controlled by the data 

handling board. It contains a transceiver and antenna that can 

Fig 2 Overview of the system architecture, with modules and interactions defined. 

Figure 1 System Architecture of the hardware-in-the-loop simulator. 



connect to the ground support equipment (GSE) antenna, 

which plugs in via USB to the GSE computer. 

Lastly, the Command and Data Handling (CDH) 

subsystem is controlled by the two data handling boards, and 

contains the main CPU and data storage of the satellite. 

 
Table 1 Summary of subsystem components included in the EyasSat 

GEN 5 Nanosatellite 

Subsystem Components 

EPS Power Distribution Board, Rechargeable 

battery, Solar Array 

ADCS ADCS Board, Reaction Wheel, 

Magnetorquers, Sun Sensors (Top, Bottom, 

Yaw) 

Thermal Thermal Array Panel with two heaters 

beneath two plates 

COMM Radio, Antenna 

CDH CPU, Data Handling Boards, Reference 

Thermosistor 

 

 

 
Figure 3 EyasSat GEN 5 Nanosatellite Simulator 

B. Setup and Parameters 

We modeled the simulation based off of existing 

CubeSat missions. With the exception of the payload, the 

EyasSat Nanosatellite closely resembles the bus for the 

BRITE constellations, so we opted to simulate the satellite 

with the same orbit as the BRITE-Toronto (ID: BTr) 

satellite. This operates in Low Earth Orbit at an altitude of 

620-643 km, inclination of 97°, and a period of 97.1 minutes 

[20]. 

For the first runthrough of the simulation, the goal was 

to demonstrate the bus can sustain daily operations which 

include attitude pointing, power in and out, data handling, 

and communications. We essentially wanted to prove the 

satellite bus could handle the daily operations without a 

payload. In future work, a payload can be added to the 

EyasSat bus, or mathematically modeled in the simulation, 

however, due to time constraints this was not possible. 

C. Simulation Performance  

Due to a few unforeseen technical difficulties and 

workarounds paired with the time constraint of the deadline, 

we were unable to get a successful runthrough with the 

hardware-in-the-loop simulator. We expect that when run in 

a real-time simulation, the EyasSat GEN 5 should be able to 

reasonably execute the flight software and subsist during 

daily operations. The case study will be completed in future 

work. 

 

IV. DISCUSSION 

This paper has presented a hardware-in-the-loop satellite 
simulator for Pre-Phase A mission planning. The simulator 
provides a feasibility check for proposed architectures with a 
higher fidelity than a purely mathematically-modeled simulator. 
The simulator has an intelligent agent “on-board” the satellite, 
which contains its own scheduler and actor. It communicates 
with the satellite hardware-in-the-loop through a hardware 
interface, which in our case study was the COSMOS interface. 
The simulator can be ran in real-time, accelerated time, or 
simply just run through executable discrete events. Due to time 
constraints, we were unable to complete our case study with data 
collection, but will do so in future work. 

 

V. FUTURE WORK 

Immediate future work demands a completed case study trial 
with the hardware-in-the-loop. As mentioned prior, due to the 
time constraints of the program, we were unable to complete the 
case study. 

Beyond simply completing the case study, future work 
regarding hardware-in-the-loop simulations includes the 
addition of a payload to the satellite. In addition to simulating a 
payload, a mathematical model of the propulsion system may 
also be added to the hardware-in-the-loop simulation. This 
addition of the propulsion system would require that the 
simulator not pre-compute all attitude data, and that it computes 
the attitude with OrbitPy as the simulation goes along. 
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