
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Day-in-the-Life Hardware-in-the-Loop Satellite

Simulator for Mission Concept Verification

Luke Bedrosian

Department of Aerospace Engineering

Texas A&M University

College Station, TX, USA

lukebedrosian@tamu.edu

Abstract— This paper presents the development of a satellite

simulation tool that simulates a “day in the life” in the operations

of a satellite to help establish the feasibility of a mission concept

during Pre-Phase A conceptual mission studies. The paper

provides a thorough description of the simulation tool, which

propagates a rich satellite state vector which, in addition to

position and velocity (or orbital parameters), includes on/off state

of significant components, power in/out, battery state of charge,

eclipse, and data storage. The simulator includes an interface that

executes the flight software at discrete events in the simulation

(e.g., attitude changes) on realistic satellite hardware, which is not

conventionally done until much later i.e. Phase B-C. This can help

us identify issues with a mission conops earlier. In this case, the

hardware used is the EyasSat GEN 5 Nanosatellite Simulator, and

is controlled using COSMOS by Ball Aerospace. The constraints

imposed by this hardware are only representative of very small

satellites. The paper discusses simulation performance and its

implications for facilitating feasibility checks in early mission

concept studies.

Keywords—Simulation, Satellite, Mission Planning, Design

I. INTRODUCTION

A simulation is an essential tool in the design and
verification of space systems, and in the Pre-Phase A stage of
the systems design process can serve as a feasibility check for
proposed mission concepts [1]. During these conceptual studies,
numerous tools may be deployed to evaluate the expedience and
stakeholder satisfaction of proposed mission architectures.
These tools include but are not limited to parametric sizing,
rules-based expert systems, and Concept of Operations
(ConOps) simulators [2, 3, 4]. While current ConOps
simulations ascertain the efficacy of the “day in the life”
operations of a satellite, current tools do not incorporate the
hardware aspect of such designs beyond basic software
modeling. Satellite simulators that include the hardware-in-the-
loop are typically reserved for later phases in the design process
for design testing and verification i.e., Phase D [5]. The
application of a hardware-in-the-loop satellite simulator that
simulates day-in-the-life operations provides an additional level
of fidelity in early mission feasibility checks. Such a tool allows
testing if existing software and hardware can be used for the
mission or if new developments must be done. It also helps
verify that certain mission requirements can be met for new
distributed mission concepts that rely more on on board
processing, autonomy, and communications between satellites.

The Pre-Phase A design stage is crucial in determining the
chances of success of any given mission concept. During this
phase, a wide array of design ideas and alternatives are proposed
and weighed according to a variety of factors including
stakeholder needs, cost, risk, etc [1]. Poor decision-making in
this stage may lead to cost overruns, project delays, low
stakeholder satisfaction, and even termination of the project. In
fact, it has been shown that early design decision making is the
most frequently occurring risk area on flight software cost risk
[6].

The implementation of various software tools provide
designers with different means of assessing proposed
architectures and their merits. For example, parametric scaling
relationships provide systems engineers with estimates of the
main physical and economic aspects of the mission, including
the system budgets (e.g., mass, power) and lifefycle cost and
schedule [2, 7]. Rule-based systems such as VASSAR allow
engineers to consider qualitative requirements and subjective
preferences in addition to the quantitative and objective
information captured by parametric models [3]. Cognitive
assistants have also been proposed to help the user find good
mission designs by integrating these models mentioned above,
plus the ability to query various databases in natural language
[8]. All these tools provide valuable information to designers
that can help to make more educated decisions and reduce the
probability of pursuing flawed or suboptimal designs.

Numerous simulation tools have been implemented as well
that provide data for calculating various figures of merit and
performance metrics. Such proposed tools include constellation
instrument simulations [9], simulators that perform “what-if”
scenarios [10], space station simulators [11], and a 4-module
approach that tracks position/veclocity, equipment states, power
levels, and memory states for daily operations [4]. These are
only a few of the numerous software-only simulations that are
currently used to verify the feasibility of a given mission design
in the Pre-Phase A stage.

While using a purely mathematical model of the system
allows for a good approximation of the performance of a design,
some parts are historically difficult to model, e.g., actuators,
decreasing the fidelity of the simulation [12]. Due to this
decreased veracity, the introduction of hardware-in-the-loop in
the simulation allows for higher-fidelity simulations and
feasibility checks. The current literature on hardware-in-the-
loop simulations for space systems focuses on the integration

and testing phase of the design process, with simulations relating
to satellite attitude control, rendezvous and docking, and
CubeSats [5, 13].

This paper seeks to bridge the gap by incorporating
hardware-in-the-loop into Pre-Phase A simulations. Section II
presents the developed simulator with both the software
development and hardware used for this simulation. Section III
goes through a case study of a “day in the life” of a satellite using
our hardware-in-the-loop simulator. Finally, in Section IV we
discuss the applicability of such a tool and future work to be
done.

II. SYSTEM OVERVIEW

A. Overall Architecture

The architecture of the hardware-in-the-loop simulator
consists of four modules: the Agent module, the Orbit
Propogator Module (poisiont, velocity, attitude, coverage data),
the satellite hardware interface, and the satellite hardware. A
diagram of the architecture is provided in Figure 1.

 The simulator uses the concept of an Agent class, which is
part of our lab’s Distributed Multi-Agent Satellite System
Simulation (DMAS) project developed by Alan Aguilar. This
provides the user optionality to simulate satellite constellations
with distributed architectures with hardware-in-the-loop. In this
architecture, satellites, ground stations, and aircraft are all
treated as Agents.

 Each Agent has an Actor, a Scheduler, and a Platform
Simulator. The Actor perceives information from its
environment or from other agents and performs the actions given
by the Scheduler. The Scheduler processes information
perceived by the agent, maintains an internal knowledge base,
and determines the next sequence of actions to be performed.
The Platform Simulator tracks the current state of the agent and
can turn off the Agent if actions exceed capabilities.

 This approach provides the flexibility to run multiagent
simulations with decentralized planning, where each agent is an
independent actor, multiagent simulations with centralized
planning, where there is a central agent that sends actions to the
rest of the agents, or to run with a single agent i.e., no
constellation. A benefit of including an onboard Agent is that
one can configure the onboard Agent program to change its
behavior based on what it perceives, as is the case with many
modern satellite flight softwares. Additionally, it provides a
framework for reinforcement learning with the flight software
and onboard agent [14].

 In addition to this Agent Class, the simulator draws upon the
Orbit Propogator module for position, attitude and coverage
data. The agent class also receives information from the
hardware interface which can receive and send information from
other agents, e.g. satellites, in the simulation. The Agent sends
commands and updates to the hardware interface that may
include executable flight software or commands to message
other agents.

B. Software Development

The simulator is primarily written in Python and uses the
SimPy package, a process-based discrete-event simulation
framework. This package enables the user to simulate in real-
time, “as fast as possible,” or by manually stepping through
discrete events [14]. The simulator provides flexibility to the
user, with the option to run the satellite simulation in real-time,
or to speed up the simulation until a discrete event with
commands to be executed on the satellite hardware.

The simulator propagates the state of various parameters
throughout the simulation including position, velocity, attitude,
access/coverage, power systems, and communications/data
handling. The information coming from Orbit Propogator
module is a cartesian state vector of position and velocity, along
with a Boolean value of whether the satellite is in an eclipse state
or not. The Orbit Propogator Module uses OrbitPy, a software
framework which facilitates the design of novel observation
systems [15]. The coordinate system selected is the J2000
celesital coordinate system, although the user can change this if
desired. Additionally, coverage metrics can be calculated on a
coverage grid given the swath and scan characteristics of the
simulated payload. These orbit and coverage calculations are
pre-computed before the start of the simulation with an inputted
start time, orbit, and simulation duration. The precomputation of
orbit propagation and coverage does indicate, however, that
performing orbit changes in the flight software is not currently
supported. This is something that can be implemented in future
work. The power and communications simulations can be
performed in two ways, either entirely mathematically modeled,
or using the state of the hardware-in-the-loop.

The mathematically-modeled state of the power and
communications systems track the battery charge state, power
out, power in (solar arrays), available data storage, and the
amount of data transmitted. They use known characteristics to
model the expected behavior of the systems for each interpolated
interval. The use of the mathematically-modeled system states
is useful when testing out specific flight software on individual
systems, e.g. the attitude, determination, and control subsystem
(ADCS). Additionally, it may be difficult to simulate the proper
solar input for the solar panels when performing a hardware-in-
the-loop simulation, so mathematical modeling is best suited
when proper environments are not available.

Using the state of the hardware in the simulation produces
the greatest fidelity of simulation this tool provides. The user can
track the real time characteristics of the power in/out, available
data storage, and the states of both the thermal and ADCS
subsystems. An application of the hardware-in-the-loop
simulator is expanded upon in Section III.

C. Hardware Components

For industrial applications, a majority of the hardware
components will likely be readily available at the time of
mission conception, especially for small satellites and CubeSats
[16]. The application to CubeSats is evermore important with
the increasing proportion of CubeSats being launched and the
advent of CubeSat Comercial-Off-The-Shelf (COTS)
components [17]. On account of this, likely, the majority of the
hardware components being considered for the mission
architecture in industrial use cases are readily available, and
hence may be used as the hardware-in-the-loop for simulation.

Texas A&M Engineering Undergraduate Summer Research Grant

Since industrial use cases require the flexibility to
incorporate their own hardware and flight software, which may
be executed through different software, the simulator developed
has the open flexibility of connecting to different APIs to
interface with the satellite hardware. It is commonplace for
companies to maintain their own catalog of components, either
developed by them directly or used in past missions, so this API
allows for easy integration of industrial components on hand. As
further discussed in Section III, we applied this to the EyasSat
GEN 5 Nanosatellite simulator, using an API to control it with
COSMOS by Ball Aerospace.

III. CASE STUDY

 To test the efficacy of the simulator developed, we
applied it to the aforementioned EyasSat GEN 5 Nanosatellite
[18], a prime example of readily available COTS hardware.

A. Hardware Specifications

A summary of the systems and components of the satellite is
shown in Table 1. The EyasSat is controlled using the COSMOS
Open Source Command-and-Control System built by Ball
Aerospace [19]. This includes a GUI for user controls and data
viewing, as well as a built-in JSON API. Communications
between the simulator and the satellite hardware are conducted
using the ballcosmos Python package, the official Python API
for COSMOS. In COSMOS, the executable flight software
commands are written in Ruby, and are then converted into
command packets that are readable for the satellite components.

The EyasSat has four distinct boards that control the various
subsystems of the satellite. These include the power distribution
board, the ADCS board, and two data handling boards. The
communications and thermal subsystems are controlled via the
two data handling boards.

The electric power subsystem (EPS) is controlled by the

power distribution board. This boards monitors and manages

the various components of the EPS. The two main components

within the power system are the battery, for energy storage,

and the solar arrays, the energy source. The battery can be

recharged either using the solar arrays, or by using an external

5.3 V charger. The solar array is body-mounted on one side of

the satellite, with 6 solar cells. These can be run in two

configurations, either 3 parallel 2 series, or 2 parallel 3 series.

The Attitude, Determination, and Control Subsystem

(ADCS) board controls the various components of the ADCS.

The EyasSat has three degrees of rotational freedom, with one

reaction wheel for rotation about the z-axis, and two

orthogonally placed magnetorquers for rotation about the x-

axis and y-axis.

The Thermal subsystem is controlled by the data handling

boards. It contains a thermal panel mounted opposite the solar

array, which has two heaters beneath 2 plates, a copper rod,

and heat pipe. It also contains temperature probes for sensing

and maintaining proper temperature within the satellite.

The communications subsystem is controlled by the data

handling board. It contains a transceiver and antenna that can

Fig 2 Overview of the system architecture, with modules and interactions defined.

Figure 1 System Architecture of the hardware-in-the-loop simulator.

connect to the ground support equipment (GSE) antenna,

which plugs in via USB to the GSE computer.

Lastly, the Command and Data Handling (CDH)

subsystem is controlled by the two data handling boards, and

contains the main CPU and data storage of the satellite.

Table 1 Summary of subsystem components included in the EyasSat

GEN 5 Nanosatellite

Subsystem Components

EPS Power Distribution Board, Rechargeable

battery, Solar Array

ADCS ADCS Board, Reaction Wheel,

Magnetorquers, Sun Sensors (Top, Bottom,

Yaw)

Thermal Thermal Array Panel with two heaters

beneath two plates

COMM Radio, Antenna

CDH CPU, Data Handling Boards, Reference

Thermosistor

Figure 3 EyasSat GEN 5 Nanosatellite Simulator

B. Setup and Parameters

We modeled the simulation based off of existing

CubeSat missions. With the exception of the payload, the

EyasSat Nanosatellite closely resembles the bus for the

BRITE constellations, so we opted to simulate the satellite

with the same orbit as the BRITE-Toronto (ID: BTr)

satellite. This operates in Low Earth Orbit at an altitude of

620-643 km, inclination of 97°, and a period of 97.1 minutes

[20].

For the first runthrough of the simulation, the goal was

to demonstrate the bus can sustain daily operations which

include attitude pointing, power in and out, data handling,

and communications. We essentially wanted to prove the

satellite bus could handle the daily operations without a

payload. In future work, a payload can be added to the

EyasSat bus, or mathematically modeled in the simulation,

however, due to time constraints this was not possible.

C. Simulation Performance

Due to a few unforeseen technical difficulties and

workarounds paired with the time constraint of the deadline,

we were unable to get a successful runthrough with the

hardware-in-the-loop simulator. We expect that when run in

a real-time simulation, the EyasSat GEN 5 should be able to

reasonably execute the flight software and subsist during

daily operations. The case study will be completed in future

work.

IV. DISCUSSION

This paper has presented a hardware-in-the-loop satellite
simulator for Pre-Phase A mission planning. The simulator
provides a feasibility check for proposed architectures with a
higher fidelity than a purely mathematically-modeled simulator.
The simulator has an intelligent agent “on-board” the satellite,
which contains its own scheduler and actor. It communicates
with the satellite hardware-in-the-loop through a hardware
interface, which in our case study was the COSMOS interface.
The simulator can be ran in real-time, accelerated time, or
simply just run through executable discrete events. Due to time
constraints, we were unable to complete our case study with data
collection, but will do so in future work.

V. FUTURE WORK

Immediate future work demands a completed case study trial
with the hardware-in-the-loop. As mentioned prior, due to the
time constraints of the program, we were unable to complete the
case study.

Beyond simply completing the case study, future work
regarding hardware-in-the-loop simulations includes the
addition of a payload to the satellite. In addition to simulating a
payload, a mathematical model of the propulsion system may
also be added to the hardware-in-the-loop simulation. This
addition of the propulsion system would require that the
simulator not pre-compute all attitude data, and that it computes
the attitude with OrbitPy as the simulation goes along.

ACKNOWLEDGMENT

I thank Alan Aguilar of the Systems Engineering,
Architecture, and Knowledge (SEAK) Lab at Texas A&M
University for providing the structure of the DMAS Intelligent
Agent architecture, and providing guidance on the matter.

REFERENCES

[1] G. Shea, “3.3 Project Pre-Phase A: Concept Studies,” NASA, 19-Apr-
2019. [Online]. Available: https://www.nasa.gov/seh/3-3-project-pre-
phase-a-concept-studies. [Accessed: 25-Jul-2022].

[2] P. N. Springmann and O. L. de Weck, “Parametric scaling model for
nongeosynchronous communications satellites,” Journal of Spacecraft
and Rockets, vol. 41, no. 3, pp. 472–477, 2004.

[3] D. Selva and E. F. Crawley, “Vassar: Value Assessment of system
architectures using rules,” 2013 IEEE Aerospace Conference, 2013.

[4] Chagas, Ronan & Louro, Arcélio & Souza, Fabiano & Gomes dos Santos,
Willer. (2016). Satellite Simulator for Verification of Mission
Operational Concepts in Pre-Phase A Studies.

[5] R. Rodrigues, A. Murilo, R. V. Lopes, and L. C. Souza, “Hardware in the
loop simulation for model predictive control applied to satellite attitude
control,” IEEE Access, vol. 7, pp. 157401–157416, 2019.

[6] J. M. Hihn, K. Lum, and E. Monson, “Organizational structure impacts
flight software cost risk,” Journal of Cost Analysis and Parametrics, vol.
2, no. 1, pp. 23–36, 2009.

[7] W. J. Larson and J. R. Wertz, Space mission analysis and design.
Germany: Springer-science, 1992.

[8] H. Bang, A. Virós Martin, A. Prat, and D. Selva, “Daphne: An intelligent
assistant for Architecting Earth Observing Satellite Systems,” 2018 AIAA
Information Systems-AIAA Infotech @ Aerospace, 2018.

[9] S. Nag, V. Ravindra, and J. L. Moigne, “Instrument modeling concepts
for TRADESPACE analysis of satellite constellations,” 2018 IEEE
SENSORS, 2018.

[10] X. Cyril, “ROSESAT -- A Graphical Spacecraft Simulator for Rapid
Prototyping ,” SPACE OPS Symposium, 1998.

[11] K. Wang, B. Zhang, and T. Xing, “Preliminary integrated analysis for
modeling and optimizing space stations at Conceptual Level,” Aerospace
Science and Technology, vol. 71, pp. 420–431, 2017.

[12] M. Bacic, “On hardware-in-the-loop simulation,” Proceedings of the 44th
IEEE Conference on Decision and Control.

[13] S. Corpino and F. Stesina, “Verification of a CubeSat via hardware-in-
the-loop simulation,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 50, no. 4, pp. 2807–2818, 2014.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: The MIT Press, 2020.

[15] V. Castillo, “Parallel simulations of manufacturing processing using
Simpy, a python-based discrete event Simulation Tool,” Proceedings of
the 2006 Winter Simulation Conference, 2006.

[16] V. Ravindra, R. Ketzner, and S. Nag, “Earth observation simulator (EO-
SIM): An open-source software for observation systems design,” 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS,
2021.

[17] L. C. Chang and A. Chandran, “Preface: Advances in small satellites for
space science,” Advances in Space Research, vol. 66, no. 1, pp. 1–2, 2020.

[18] D. Selva and D. Krejci, “A survey and assessment of the capabilities of
Cubesats for Earth Observation,” Acta Astronautica, vol. 74, pp. 50–68,
2012.

[19] O. Ritchey, J. Clark, J. White, T. White, D. Barnhart, and J. Sellers,
“Eyassat: Transforming the way students experience space systems
engineering,” 2004 Annual Conference Proceedings.

[20] R. Melton and J. Thomas, “A Cloud-Based, Open-Source, Command-
and-Control Software Paradigm for Space Situational Awareness,”
Advanced Maui Optical and Space Surveillance (AMOS) Technologies
Conference, 2017.

[21] Pablo, H., Whittaker, G. N., Popowicz, A., Mochnacki, S. M., Kuschnig,
R., Grant, C. C., Moffat, A. F., Rucinski, S. M., Matthews, J. M.,
Schwarzenberg-Czerny, A., Handler, G., Weiss, W. W., Baade, D., Wade,
G. A., Zocłońska, E., Ramiaramanantsoa, T., Unterberger, M., Zwintz,
K., Pigulski, A., … Zee, R. E. (2016). The BRITE constellation
nanosatellite mission: Testing, commissioning, and Operations.
Publications of the Astronomical Society of the Pacific, 128(970),
125001. https://doi.org/10.1088/1538-3873/128/970/125001

